A New Route to Hydrido- and Nitrogen Complexes of Cobalt

By M. Rossi and A. Sacco*

(Istituto di Chimica Generale e Inorganica, Università di Bari, Italy)

THE reactions of π -cyclo-octenyl- π -cyclo-octa-1,5-dienecobalt, Co(C₈H₁₃)(C₈H₁₂), with carbon monoxide and subsequently with tertiary phosphines and phosphites have been described.¹ As an extension of our studies on the hydride-complexes of transition metals and on the fixation of molecular nitrogen under mild conditions,² we report the reactions of Co(C₈H₁₃)(C₈H₁₂) with tertiary phosphines, arsines, and phosphites under argon, hydrogen, and nitrogen at room temperature and atmospheric pressure. These reactions furnish a new and more convenient method for the preparation of hydrido- and nitrogen complexes of cobalt, of formula CoH₃L₃ and CoHN₂L₃, some of which have been described already,² and new complexes, of formulae CoHL₃, CoHL₄ and Co(C₈H₁₃)L₂.

The reactions between $Co(C_8H_{13})(C_8H_{12})$ and the ligand, in pentane or benzene solution and under argon, occur according to the following equilibria $[L = PPh_3, PMePh_2, PEtPh_2, PBuPh_2, PEt_2Ph, PBu_2Ph, PBu_3, PPh(OPh)_2, P(OPh)_3, or AsPh_3]:$

$$\operatorname{Co}(\operatorname{C}_{8}\operatorname{H}_{13})\operatorname{L}_{2} + \operatorname{L} \rightleftharpoons [\operatorname{Co}(\operatorname{C}_{8}\operatorname{H}_{13})\operatorname{L}_{3}] \rightleftharpoons$$
(III)
$$\operatorname{CoHL}_{2} + \operatorname{C_{2}H}_{23} (2)$$

$$(\mathbf{H}) \stackrel{\text{coll}}{=} \mathbf{G}_{3} \stackrel{\text{coll}}{=}$$

$$CoHL_3 + L \approx CoHL_4 (IV)$$
 (3)

only with PPh_3 and $PMePh_2$, in pentane solution and with a molar ratio ligand:cobalt 2:1. These compounds, slightly soluble in pentane, were characterised by means of their elemental analysis and n.m.r. spectra.

With the other ligands, in the same molar ratio, compounds (II) were detected in solution by means of their n.m.r. spectra (C_6D_6), but could not be crystallised from benzene or pentane.

With an excess of ligand, under argon, reactions (1), (2), and (3) are quantitatively displaced to the right where $L = PMePh_2$, $PPh(OPh)_2$, and $P(OPh)_3$. Compounds (IV) with these ligands were obtained in pure crystalline form and characterised by means of their elemental analysis, thermal decomposition, and i.r. spectra (Table).

With an excess of ligand (ligand:cobalt >4:1), under hydrogen, reactions (1) and (2) are quantitatively displaced to the right with all the ligands used. However, under these conditions, both reactions (3) and (4) can occur. Reaction (3) is favoured with PMePh₂, PPh(OPh)₂, P(OPh)₃, and AsPh₂, which give compounds (IV), whereas reaction (4) is favoured with PPh₃, PEtPh₂, PBuPh₂, PEt₂Ph, PBu₂Ph, PBu₃, which give compounds (V). Compounds (V) with PMePh₂ could be obtained under the same conditions, but with a molar ratio cobalt:ligand of 1:3.

With an excess of ligand in benzene solution and under nitrogen the reactions (1), (2), and (5) yield compounds

(VI) with the ligands PPh₃, PEtPh₂, PBuPh₂, PEt₂Ph.

tions (4) and (5) show that the equilibria are strongly

dependent on the π -acceptor and σ -donor properties of the

ligand; compounds (V) and (VI) are less stable with the more π -acid ligands. Compounds (III) can easily be obtained from compounds (V) and (VI) when the ligand is

We thank the Consiglio Nazionale delle Ricerche for

(Received, March 11th, 1969; Com. 346.)

Preliminary data on the equilibrium constants of equa-

PBu₂Ph, and PBu₃ (Table).

financial support.

of the type PR_2Ph or PR_3 (R = alkyl).

I.r. absorption bands (cm.-1)

L	Solvent	CoHL_3 $\nu_{\operatorname{Co-H}}$	$CoHL_4$ ν_{Co-H}	CoH₃L₃ ∨co− n	CoHN ₂ L ₃ Vn=n
PPh₃ PMePh₃	Benzene Nujol		1958m	1760s—1947m	2090vs
PMePh ₂ PEtPh	Benzene Benzene			1740s—1944m 1743s—1928m	2077vs 2060vs
PBuPh ₂ PEt_Ph	Benzene	1940s		1738s—1920m	2070vs
$\operatorname{PEt}_2\operatorname{Ph}$ $\operatorname{PBu}_3\operatorname{Ph}$	Benzene Benzene	10100		1720s—1924m 1722s—1922m	2060vs 2060vs
PBu_3 AsPh ₃	Benzene Nujol		1978w	1720s—1920m	2050vs

Reactions (2) and (3) are more or less displaced to the right according to the nature of the ligand. Under hydrogen, the reaction (2) is quantitatively displaced to the right, because of the hydrogenation of the cyclo-octadiene. Moreover, in competition with reaction (3), the following equilibrium occurs:

(III)
$$\operatorname{CoHL}_3 + \operatorname{H}_2 \rightleftharpoons \operatorname{CoH}_3 \operatorname{L}_3 (V)$$
 (4)

Under nitrogen, the following reaction, in competition with reactions (2) and (3), occurs:

$$CoHL_3 + N_2 \rightleftharpoons CoHN_2L_3 (VI)$$
 (5)

Compounds (II) were obtained in pure crystalline form

² A. Sacco and M. Rossi, *Chem. Comm.*, 1967, 316; Inorg. Chim. Acta, 1968, 2, 127; A. Sacco and M. Aresta, Chem. Comm., 1968, 1223.

¹S. Otsuka and M. Rossi, J. Chem. Soc. (A), 1969, 497.